Corndoggle

Dallas Is Banking On Ethanol, But Is It The Fuel Of The Future Or A Barrel Of Pork?


The genius behind Panda Energy's "poop-to-pump" ethanol plant in Hereford is that it skirts many of the meager energy gains and environmental criticisms lodged against the ethanol production process. Because the plant is fueled not by a useful energy source but by what is essentially a nuisance waste, energy consumption levels in the refining process become irrelevant: Mostly useless manure becomes a valuable fuel. And because decaying manure yields emissions—namely methane—that are far more potent greenhouse gases than carbon dioxide, emissions from Panda's plant are benign in context. This is why Panda is replicating its manure blueprint in Sherman and Kansas.

"One of the problems with biomass is finding an area that has enough biomass fuel of any significance to make the project work," says Panda CEO Todd Carter. This is also why the usefulness of Panda's blueprint is extremely limited.

Yet the general concept isn't. Energy Products of Idaho (EPI), the company that designed the manure gasification component of Panda's ethanol plant, also builds power plants fueled by garbage. The benefits are stunning. Respiring landfills spew a host of noxious emissions into the atmosphere, including carbon monoxide and methane. Gasifying the garbage and using those gases as fuel to generate electricity or potentially power an ethanol refinery is not only environmentally beneficial, it's potentially lucrative: Municipalities pay people to take their garbage. Yet EPI's Kent Pope, whose company has built just four such power plants in the United States, says developers of such projects face fierce "NIMBY" (not in my back yard) opposition, tying up plant developers in court until they throw up their hands in surrender. His projects receive a far warmer reception in Europe, where landfill space is far tighter.

Corn-based ethanol is "pure boondoggle," says Sterling Burnett of the Dallas-based National Center for Policy Analysis.
Mark Graham
Corn-based ethanol is "pure boondoggle," says Sterling Burnett of the Dallas-based National Center for Policy Analysis.
Digging for coe pies: Panda Energy Vice President Kyle 
Woodruff, CEO Todd Carter and COO Darol Lindloff break 
ground on Panda's manure-powered ethanol plant.
Digging for coe pies: Panda Energy Vice President Kyle Woodruff, CEO Todd Carter and COO Darol Lindloff break ground on Panda's manure-powered ethanol plant.

"You don't want to create an incentive to produce garbage," Greene argues. "Our production of garbage today is a function of our consumption patterns, which are themselves unsustainable."

"Wonderful," Pope counters. "Eliminate all you can. And then with the other 97 percent that you can't eliminate, let's produce energy. Let's not just throw it into the ground."

Dr. Chris Bachmann, an alternative fuels researcher at James Madison University in Harrisonburg, Virginia, is exploring an even more outlandish fuel source: algae. He says algae can potentially produce more than 30 times the biodiesel oil per acre of the most productive biodiesel crops such as canola and palm. Plus, once perfected, the leftover biomass can be converted into cellulosic ethanol for even more fuel gains. This means destructive algae blooms from fertilizer runoff polluting bays and other waterways might someday be profitably harvested as fuel.

"These micro algae are some of the fastest-growing plants on the planet if you give them the CO2 they need," Bachmann says. That's why he's exploring closed loop "bioreactors" that feed on nitrous oxide and carbon dioxide emissions from coal-fired power plants, essentially creating bio-scrubbers that generate motor fuels. With these systems, he says, fuel-producing algae can be harvested daily instead of the once or twice per year fuel crops are harvested on land.

But maximizing the process will require genetic engineering to accelerate algae growth rates and fuel output. He's also studying processes to transplant genes that produce the enzymes that break down cellulose from fungi into bacteria, which grow much faster. "There's going to be a lot of that," he says of genetically modified fuel organisms. Yet environmentalists, who heartily endorse renewable fuels, are almost universally opposed to genetic modification, which may prove the key to making these fuels feasible on a large scale.

The upshot? Fossil fuels will in all likelihood be our most significant fuel source by far for a long time, at least through the next century. No plausible combination of alternative fuels or efficiency gains can substitute in any significance for projected oil consumption growth in the foreseeable future—at least not without onerous taxes and police state tactics. The potential alternatives may be exciting and numerous, but the challenges and compromises they encumber are daunting.

« Previous Page
 |
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
All
 
My Voice Nation Help
0 comments
Sort: Newest | Oldest
 
Loading...