How Texas Came Within an Atom's Breadth of Discovering the God Particle

Ryszard Stroynowski sat bathed in the pale glow of his laptop screen. At 2 in the morning of Independence Day, as the final, fugitive firecracker reports of the night crackled across a sleeping Dallas, the 65-year-old physicist was wide awake. As he watched the live broadcast in his pajamas, his colleagues at the European Organization for Nuclear Research (CERN) in Geneva, the locus of the physics universe, tolled the end of the search for an elusive force that had confounded them for half a century. It was the final puzzle piece in a theory that describes with unfathomable precision the fundamental particles of the universe and the laws they obey.

This piece, known as the Higgs boson and often referred to in the popular press as "the God particle," was detected in the largest scientific experiment ever devised. Inside a racetrack-shaped particle accelerator five miles across and spanning the borders of France and Switzerland, researchers had reproduced the first, violent moments of creation. By crossing opposing beams of protons powered by enough electrical current to flash-melt a ton of steel instantaneously, and guided by megalithic magnets ringing the accelerator's course, researchers induced collisions powerful enough to overcome the elemental forces that bind the proton's constituents. Out of the flashes of the collisions, they glimpsed the wraith-like field that allowed atoms and molecules, stars and planets, to coalesce out of chaos. What they found helped the shapeless take form.

"As a layman, I would now say I think we have it," said a beaming Rolf Heuer, director-general of CERN, to the experimenters, the press and to anyone in the world with an Internet connection.

Stroynowski, an avuncular man with a smooth pate, a white corona of hair and pale gray eyes, already knew, had known for months. After all, he had crunched the numbers. He led the design and construction of the major component of a detector heavier than an aircraft carrier and as big as the science building at Southern Methodist University, where he teaches. It was called ATLAS, and it found the Higgs.

Stroynowski knew something else, too, a truth that had irrevocably altered his life, the lives of thousands of physicists and the future of North Texas, if not the state. Once upon a time, a tiny town known for its blackland prairie and cotton fields, just a straight shot south down Interstate 35 from Dallas, was physics' next frontier. In 1988, Ellis County was selected the winner in a heated nationwide competition to be the site for a particle accelerator that would dwarf the one in Geneva. In size, the leviathan's circumference would approach D.C.'s Beltway, some 54 miles around; big enough to envelop Waxahachie, and require the extinction of a nearby farming hamlet. The world's existing accelerators had taken physics as far as they could. The accelerator in Texas, called the Superconducting Super Collider, had the potential to take it further than any theorist could possibly dream, opening doors they could not predict.

Thousands of physicists from all over the world, including Stroynowski, pulled up stakes and migrated to the North Texas site as though it were Mecca, a holy place where the future of the field lay. They established physics departments at nearby universities and began construction of the Super Collider and the components they had to literally invent as they went along. But in 1993, after more than a decade of work and $2 billion spent, Congress canceled it. Its death rendered stillborn American hegemony in the physics world and drove a host of promising young minds from the field.

CERN would soon retrofit the tunnels of an existing accelerator for the Large Hadron Collider, a machine with a fraction of the Super Collider's power but designed nonetheless to fill the vacuum it left behind. The center of the physics world shifted back to Europe, along with all of the attendant jobs and industry required to make the search for the Higgs possible. The site of the greatest discovery of Stroynowski's career was confirmed not in another county, but on another continent.

To a scientist like Stroynowski, the advancement of knowledge is what matters, not the means used to achieve it, and the inescapable fact was that if America had completed the Super Collider, the Higgs would have been identified 10, even 15 years earlier. In that way, the Super Collider's demise reverberates still through the physics community. It's woven inextricably into the course of Stroynowski's life, and into the announcement he now bore witness to on a laptop screen, from half a world away.

President Ronald Reagan listened as his director of energy research laid out the justifications for the Superconducting Super Collider on January 29, 1987. At an estimated $4.4 billion, it would be the costliest and largest scientific experiment ever created, he explained. Europe now led the world of high-energy physics. Our Cold War adversary, the Soviet Union, was gaining ground. With Reagan's authorization, the United States could reclaim pre-eminence for years to come.

KEEP THE DALLAS OBSERVER FREE... Since we started the Dallas Observer, it has been defined as the free, independent voice of Dallas, and we'd like to keep it that way. With local media under siege, it's more important than ever for us to rally support behind funding our local journalism. You can help by participating in our "I Support" program, allowing us to keep offering readers access to our incisive coverage of local news, food and culture with no paywalls.
Brantley Hargrove

Latest Stories